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LANL Ejecta Experiments
• 2017 Experiments  study ejecta 

transport in inert and reactive gases
– Solid ejecta

• 2019 Experiments Repeat 2017 
experiments with liquid ejecta

• Target thicknesses:
– 2017 Tin:       2 𝑚𝑚𝑚𝑚
– 2017 Cerium: 3 𝑚𝑚𝑚𝑚
– 2019 Cerium: 1.75 𝑚𝑚𝑚𝑚

[1] Buttler, W. T., Lamoreaux, S. K., Schulze, R. K., Schwarzkopf, et al. (2017). Ejecta Transport, Breakup and Conversion. 
Journal of Dynamic Behavior of Materials, 3(2), 334-345.

Figure 1: Figure 3 from [1] showing the ejecta experiment 
configuration and diagnostics
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LANL Ejecta Experiments

• Reacting ejecta show a staged rapid break-up phenomenon not seen otherwise
• Schwartzkopf and Schulz developed initial “0D” models of solid ejecta phenomena

– did not account for spatial variations in gas or particle cloud temperatures

Overall goal for work: 
1. Develop a 2D simulation to that enables accurate validation with experiments
2. Build a melt based break-up model on top of this 2D simulation and try to reproduce 

the new staged breakup behavior

Figure 2: Figure 6 from [2] shows ejecta velocities over time while propagating in a 
vacuum (left), an inert gas (center) and a reactive gas (right)

[2] Buttler, W. T., Schulze, R. K., Charonko, J. J., Cooley, J. C., Hammerberg, J. E., Schwarzkopf, et al. (2021). Understanding 
the transport and break up of reactive ejecta. Physica D: Nonlinear Phenomena, 415, 132787.
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• Searched aluminum combustion literature for analogous behaviors
• In the “melt dispersion mechanism” [3], if an initially solid particle melts at a fast 

heating rate while surrounded by an oxide shell, it will generate stresses which will 
fracture the shell and possibly cause cavitation due to an unloading wave 

• Preliminary calculations using the physical constants for cerium and its hydride 
showed that this phenomenon, if present, may cause cavitation in the ejecta so long 
as 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 < 0.653 𝜇𝜇𝜇𝜇

• Since, for us, the ejecta are initially liquid, but may form a crust afterwards, it is 
unclear how relevant this mechanism is. 
– Left open the possibility that this phenomenon could be occurring locally and cause the 

hydride shell to flake off rather than universally fracture

Melt Dispersion Mechanism

[3] Levitas, V. I., Asay, B. W., Son, S. F., and Pantoya, M., 2007. “Mechanochemical mechanism for fast reaction of
metastable intermolecular composites based on dispersion of liquid metal”. Journal of Applied Physics, 101(8), p. 083524

Table 1: Results from sample calculations used to determine the potential feasibility of cavitation in the ejecta particles from the experiments
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Particle Energy Equation: Numerical Stability
• Discovered a numerical stability issue in the implementation of the particle 

temperature update of the hydride model
• Tested with a single, small tin particle transporting in helium,

– Initial method was semi-implicit:     Δ𝑒𝑒𝑝𝑝
Δ𝑡𝑡

= 𝑁𝑁𝑢𝑢𝑛𝑛

2
𝐶𝐶𝑚𝑚

𝜏𝜏𝑇𝑇
𝑛𝑛 𝑇𝑇∞𝑛𝑛 − 𝑇𝑇𝑝𝑝𝑛𝑛+0.5

– Writing this as 𝑇𝑇𝑝𝑝𝑛𝑛+1 = 𝑎𝑎𝑇𝑇∞𝑛𝑛 + 𝑏𝑏𝑇𝑇𝑝𝑝𝑛𝑛, an additional stability criterion was found by enforcing 
𝑎𝑎 + 𝑏𝑏 = 1 and 𝑎𝑎, 𝑏𝑏 > 0  𝜟𝜟𝜟𝜟 < 𝟒𝟒𝝉𝝉𝑻𝑻

𝒏𝒏

𝑵𝑵𝒖𝒖𝒏𝒏

• Reformulated particle energy update with a fully implicit method

Figure 3: Temperature of a 1 𝜇𝜇𝑚𝑚 diameter tin particle cooling in helium from 1183 K to 600 K without (left) and with 
(right) the semi-implicit time step restriction at various particle velocities
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Hydrocode Governing Equations
Continuum Phase Governing Equations [3]      

𝜌𝜌
𝑑𝑑(𝜌𝜌−1)
𝑑𝑑𝑑𝑑

− 𝛁𝛁 � 𝒗𝒗 = 0

𝜌𝜌
𝑑𝑑𝒗𝒗
𝑑𝑑𝑑𝑑

+ 𝛁𝛁𝑃𝑃 = 0

𝜌𝜌
𝑑𝑑𝑒𝑒
𝑑𝑑𝑑𝑑

+ 𝑃𝑃𝛁𝛁 � 𝒗𝒗 = 0

Lagrangian Particle Equations:

𝑑𝑑𝒙𝒙𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝒖𝒖𝑖𝑖

𝑀𝑀𝑖𝑖
𝑑𝑑𝒖𝒖𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝑭𝑭𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑀𝑀𝑖𝑖𝐶𝐶𝑖𝑖
𝑑𝑑𝑇𝑇𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝑄̇𝑄𝑐𝑐

Discretized Staggered Mesh Equations

Trivially satisfied

𝑚𝑚𝑝𝑝
𝑑𝑑𝒗𝒗𝑝𝑝
𝑑𝑑𝑑𝑑

+ �
𝑍𝑍 𝑃𝑃

𝒇𝒇𝑍𝑍
𝑝𝑝 = 0

𝑚𝑚𝑍𝑍
𝑑𝑑𝑒𝑒𝑍𝑍
𝑑𝑑𝑑𝑑

− �
𝑃𝑃 𝑃𝑃

(𝒇𝒇𝑝𝑝𝑍𝑍 ⋅ 𝒗𝒗𝑝𝑝) = 0

Additional Code Utilities:

• ALE relaxers to avoid mesh tangling

• Particles tracked as computational 
superparticles

[3] Fung, J., Harrison, A. K., Chitanvis, S., & Margulies, J. (2013). Ejecta source and transport modeling in the FLAG hydrocode. 
Computers & Fluids, 83, 177-186.
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• Ejecta Sourcing: Richtmyer-Meshkov Source Model [4]
– Solves ODEs for bubble/spike velocities based on shock emerging from donor material and 

imparting a free-surface velocity to a perturbed surface
– Ejecta velocities: Set to the spike tip velocity
– Ejecta diameters: Based on perturbation wavelength and areal fraction of spikes on surface
– Ejecta thermodynamic properties initialized by using values from target material 2 zones 

inward from sourcing face*

• Particle-Fluid Momentum Transfer: Parmar drag correlation
𝑭𝑭𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =

1
8
𝜋𝜋𝑑𝑑𝑝𝑝2𝜌𝜌𝑓𝑓 𝒖𝒖 − 𝒗𝒗 (𝒖𝒖 − 𝒗𝒗)𝐶𝐶𝐷𝐷(𝑅𝑅𝑒𝑒𝑝𝑝,𝑀𝑀𝑝𝑝)

– Formula for 𝐶𝐶𝐷𝐷 given in [5]

• Particle-Fluid Heat Transfer: Hydriding model (currently minus the reaction term)
𝑄̇𝑄𝑐𝑐 = 𝑄̇𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝜋𝜋𝑑𝑑𝑝𝑝𝑘𝑘𝑘𝑘𝑘𝑘 𝑇𝑇𝑔𝑔 − 𝑇𝑇𝑝𝑝

𝑁𝑁𝑁𝑁 = 2 + 0.6𝑅𝑅𝑒𝑒𝑝𝑝0.5𝑃𝑃𝑃𝑃
1
3

Ejecta Models

[4] Buttler, W. T., Oró, D. M., Preston, D. L., Mikaelian, K. O et al. (2012). Unstable Richtmyer–Meshkov growth of solid and liquid 
metals in vacuum. Journal of Fluid Mechanics, 703, 60-84.
[5] Parmar, M., Haselbacher, A., & Balachandar, S. (2010). Improved drag correlation for spheres and application to shock-tube 
experiments. AIAA Journal, 48(6), 1273-1276.
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• Early flyer plate test simulations with a geometry similar to the experiments showed 
an issue with the ejecta temperatures being reported from the simulations

Modified Ejecta Initialization

z=1
z=2
z=3
z=4

Figure 4: Average ejecta temperatures for axisymmetric, 18 x 99 zone (left) and  36 x 198 zone (right) simulations 

• No heat transfer  particle temperatures were constant after ejecta creation
• This led us to investigate the method being used to initialize certain ejecta properties 
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• Originally, ejecta density, pressure, 
temperature and bulk modulus were 
all initialized to the values of the 
donor material in the zone 
immediately behind the generating 
face (i.e. z=1) 

• A problem arises as these properties 
can be unphysical in simulations near 
a material interface 

• Solution was to modify the code to 
make ejecta initialize these properties 
from a zone layer which is user-
specified in the input deck
– Exactly as existing treatment for shock 

speed and melt state calculations

Modified Ejecta Initialization

Figure 5: Surface and wireframe contours of zonal temperatures 𝟏𝟏𝟏𝟏𝟏𝟏 after 
ejecta are produced at a tin target surface for illustration of zone depths 

Location of 
Ejecta Cloud

z=1
z=2
z=3
z=4

Target 
Surface
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• Results with new initialization were satisfactory and provided accurate ejecta 
temperatures 

• These changes have recently been merged into the main code repository

Modified Ejecta Initialization

z=1
z=2
z=3
z=4

Figure 6: Average ejecta temperatures for axisymmetric, 36 x 198 zone (left) and  72 x 396 zone (right) simulations 
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Simulation Setup and Initialization

• The target and flyer plate are both set 
to be tin. 

• Flyer plate is used to avoid 
computationally modeling the HE 
from the experiments 

• Flyer plate is initialized to the jump 
velocities reported in [2]

• The gas is initialized to the ambient 
state also reported in [2]

1.2 cmGas (He/𝐷𝐷2)

2.5 cm

2 cm
2 mm

4.065 cm

1 cm

Target

Flyer Plate
r

z

“PDV” output for 
exp. IR Camera

PDV outputs for 
exp. PDV

Figure 7: Simulation Configuration for 2017 Tin Cases

“PDV” output for 
exp. M.S. 

[2] Buttler, W. T., Schulze, R. K., Charonko, J. J., Cooley, J. C., Hammerberg, J. E., Schwarzkopf, et al. (2021). Understanding 
the transport and break up of reactive ejecta. Physica D: Nonlinear Phenomena, 415, 132787.
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Simulation Matrix: Inert Experiment Comparisons

• SN 5/6 give comparisons to reported post-shock gas properties and jump velocities
• SN 5/6/7 are to compare results to LDV and IR imaging data from the experiments

– Gives comparisons of ejecta velocities and temperatures 

• CE 3 is meant to compare to Mie-Scattering experimental data for ejecta sizes 

Case Gas 𝝆𝝆𝒐𝒐 (𝒎𝒎𝒎𝒎/𝒄𝒄𝒎𝒎𝟑𝟑) 𝑷𝑷𝒐𝒐 (𝑲𝑲𝑲𝑲𝑲𝑲) 𝒉𝒉𝒐𝒐 (𝝁𝝁𝝁𝝁) 𝝀𝝀 (𝝁𝝁𝝁𝝁)
SN3 - 2017 He 0.325 2.03 2.05 39.8
SN5 - 2017 He 1.520 9.45 2.05 40.6
SN6 - 2017 𝐷𝐷2 1.310 8.11 2.15 39.5
SN7 - 2017 𝐷𝐷2 0.327 2.03 2.20 43.8
CE3 - 2019 He 0.866 5.40 2.75 50.0

Table 2: Initial conditions for the ambient gases in the simulations for each case considered
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Grid Convergence Study

• Early simulations using 2D-axisymmetric configurations show that Δ𝑧𝑧
Δ𝑟𝑟
≈ 9 lead to 

the most stable runs

• Goal: Refine the initial mesh until simulations for Cases Sn5 and SN6 gave 
comparable post-shock gas conditions and jump velocities to those in [2]  

Mesh 𝑵𝑵𝒓𝒓 𝚫𝚫𝚫𝚫 (𝝁𝝁𝝁𝝁) 𝑵𝑵𝒛𝒛 𝚫𝚫𝒛𝒛 (𝝁𝝁𝝁𝝁) 𝑵𝑵𝒕𝒕𝒕𝒕𝒕𝒕

1 360 69.5 102 614.2 36,720
2 540 46.3 152 412.2 82,080
3 792 31.5 210 298.3 166,320

[2] Buttler, W. T., Schulze, R. K., Charonko, J. J., et al. (2021). Understanding the transport and break up of reactive ejecta. 
Physica D: Nonlinear Phenomena, 415, 132787.

Table 3: Description of meshes used to study effect of grid refinement on simulated post-shock properties
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Grid Convergence Study

• The 166,320 zone mesh was able to yield post-shock values within ≈ 1% of the 
reported values (values from SN6 omitted for space)

• This mesh was chosen for the simulations discussed in the remainder of the talk

Buttler M1 M2 M3 Error 1 Error 2 Error 3

𝑢𝑢𝑗𝑗 (
𝑚𝑚𝑚𝑚
𝜇𝜇𝜇𝜇

) 1.920 1.927 1.923 1.920 0.39% 0.18% 0.01%

𝜌𝜌𝑝𝑝𝑝𝑝(
𝑘𝑘𝑘𝑘
𝑚𝑚3) 4.430 4.480 4.476 4.472 1.12% 1.04% 0.96%

𝑃𝑃𝑝𝑝𝑝𝑝(𝑀𝑀𝑀𝑀𝑀𝑀) 9.500 9.492 9.461 9.435 -0.09% -0.41% -0.68%
𝑇𝑇𝑝𝑝𝑝𝑝(𝐾𝐾) 1030.0 1027.2 1024.7 1022.6 -0.27% -0.51% -0.71%

Table 4: Simulation post-shock gas values and associated errors for Case SN5
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𝑡𝑡 = 0 𝜇𝜇𝜇𝜇𝑡𝑡 = 2 𝜇𝜇𝜇𝜇𝑡𝑡 = 5 𝜇𝜇𝜇𝜇

Simulation Contours – Case SN5

𝑡𝑡 = 10 𝜇𝜇𝜇𝜇
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𝑡𝑡 = 5 𝜇𝜇𝜇𝜇

Simulation Contours – Case SN6

𝑡𝑡 = 0 𝜇𝜇𝜇𝜇𝑡𝑡 = 2 𝜇𝜇𝜇𝜇
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Figure 8: Velocimetry plots from [2] for Cases SN5 and SN6

Downstream edge of ejecta cloud

Free Surface

Upstream edge of ejecta cloud

Velocimetry Comparison

• Simulation underpredicts particle velocity at early times
• Reasonable comparison for most of simulated time

[2] Buttler, W. T., Schulze, R. K., Charonko, J. J., et al. (2021). Understanding the transport and break up of reactive ejecta. 
Physica D: Nonlinear Phenomena, 415, 132787.
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Radiance Temperature Comparison

• The simulation particle temperatures from SN5 agree well with radiance 
measurements under this assumption

• Case SN7 is currently post-processing and will be our second validation case

• Major issue with comparing the simulations to experiments is the emissivity to use to 
convert the experimental 𝑇𝑇𝑅𝑅 to the simulation particle temperatures

• Current guidance is that using 𝜖𝜖 ≈ 0.5 is a good estimate for liquid tin

Figure 9: Particle temperature plot along with transformed radiance temperatures from [2] for for case SN5 

[2] Buttler, W. T., Schulze, R. K., Charonko, J. J., et al. (2021). Understanding the transport and break up of reactive ejecta. 
Physica D: Nonlinear Phenomena, 415, 132787.
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Ejected Mass and Size Comparisons
• We plan to compare simulation data to experimentally obtained ejecta size 

measurements to verify the ejecta sourcing model 
• The comparison point for that will be simulation CE3, which is currently running
• Cloud averaged diameters are used for two of the finished runs (Fig. 10) 
• Final comparison to experiments will be done at fixed heights corresponding to 

measurement locations

Figure 10: Average ejecta diameters over the entire cloud for simulations SN5 (left) and SN6 (right)

0.205 𝜇𝜇𝜇𝜇 0.201 𝜇𝜇𝜇𝜇
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Conclusions
• Early project work focused on finding possible break-up mechanisms for the reactive 

ejecta and fixing some hydrocode stability issues

• Initial simulation work on replicating a subset of the experiments led to modifying the 
manner in which the thermodynamic properties of the ejecta were initialized in the 
code

• Preliminary comparisons of the simulated inert cases show ejecta velocities and 
temperatures with good agreement to reported experimental data

• Waiting for a few final simulations/comparisons before claiming that our simulation 
base is ready to proceed but current results are promising
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Future Work
• Conclude verification of the inert simulations

– Ejecta temperatures against radiance temperature measurements – SN7
– Ejecta sizes against the experiments - CE3
– This will confirm to us that the current simulation platform is ready to replicate the reactive 

experiments in a quantifiable manner 

• Formulate melt-based break-up model for the transporting ejecta and implement the 
model into the hydrocode

• Run simulations of the reactive 2019 experiments and compare outputs to the 
reported diagnostics  

This work was supported by funding from ASC PEM Mix and Burn
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